skip to main content


Search for: All records

Creators/Authors contains: "Marchetti, Adrian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Photosynthetic carbon (C) fixation by phytoplankton in the Southern Ocean (SO) plays a critical role in regulating air–sea exchange of carbon dioxide and thus global climate. In the SO, photosynthesis (PS) is often constrained by low iron, low temperatures, and low but highly variable light intensities. Recently, proton-pumping rhodopsins (PPRs) were identified in marine phytoplankton, providing an alternate iron-free, light-driven source of cellular energy. These proteins pump protons across cellular membranes through light absorption by the chromophore retinal, and the resulting pH energy gradient can then be used for active membrane transport or for synthesis of adenosine triphosphate. Here, we show that PPR is pervasive in Antarctic phytoplankton, especially in iron-limited regions. In a model SO diatom, we found that it was localized to the vacuolar membrane, making the vacuole a putative alternative phototrophic organelle for light-driven production of cellular energy. Unlike photosynthetic C fixation, which decreases substantially at colder temperatures, the proton transport activity of PPR was unaffected by decreasing temperature. Cellular PPR levels in cultured SO diatoms increased with decreasing iron concentrations and energy production from PPR photochemistry could substantially augment that of PS, especially under high light intensities, where PS is often photoinhibited. PPR gene expression and high retinal concentrations in phytoplankton in SO waters support its widespread use in polar environments. PPRs are an important adaptation of SO phytoplankton to growth and survival in their cold, iron-limited, and variable light environment.

     
    more » « less
    Free, publicly-accessible full text available September 26, 2024
  2. Abstract

    Synechococcus are the most abundant cyanobacteria in high latitude regions and are responsible for an estimated 17% of annual marine net primary productivity. Despite their biogeochemical importance, Synechococcus populations have been unevenly sampled across the ocean, with most studies focused on low-latitude strains. In particular, the near absence of Synechococcus genomes from high-latitude, High Nutrient Low Chlorophyll (HNLC) regions leaves a gap in our knowledge of picocyanobacterial adaptations to iron limitation and their influence on carbon, nitrogen, and iron cycles. We examined Synechococcus populations from the subarctic North Pacific, a well-characterized HNLC region, with quantitative metagenomics. Assembly with short and long reads produced two near complete Synechococcus metagenome-assembled genomes (MAGs). Quantitative metagenome-derived abundances of these populations matched well with flow cytometry counts, and the Synechococcus MAGs were estimated to comprise >99% of the Synechococcus at Station P. Whereas the Station P Synechococcus MAGs contained multiple genes for adaptation to iron limitation, both genomes lacked genes for uptake and assimilation of nitrate and nitrite, suggesting a dependence on ammonium, urea, and other forms of recycled nitrogen leading to reduced iron requirements. A global analysis of Synechococcus nitrate reductase abundance in the TARA Oceans dataset found nitrate assimilation genes are also lower in other HNLC regions. We propose that nitrate and nitrite assimilation gene loss in Synechococcus may represent an adaptation to severe iron limitation in high-latitude regions where ammonium availability is higher. Our findings have implications for models that quantify the contribution of cyanobacteria to primary production and subsequent carbon export.

     
    more » « less
  3. Abstract

    Southern Ocean (SO) diatoms play an important role in global carbon flux, and their influence on carbon export is directly linked to interactions with epiphytic bacteria. Bacterial symbionts that increase diatom growth promote atmospheric carbon uptake, while bacterial degraders divert diatom biomass into the microbial loop where it can then be released as carbon dioxide through respiration. To further explore SO diatom-bacterial associations, a natural model system is needed that is representative of these diverse and important interactions. Here, we use concurrent cultivation to isolate a species of the ecologically-important SO diatom, Pseudo-nitzschia subcurvata, and its co-occurring bacteria. Although vitamin-depleted, axenic Pseudo-nitzschia grew poorly in culture, addition of a co-isolated Roseobacter promoted diatom growth, while addition of a co-isolated Flavobacterium negatively impacted diatom growth. Microscopy revealed both bacterial isolates are physically associated with diatom cells and genome sequencing identified important predicted functions including vitamin synthesis, motility, cell attachment mechanisms, and diverse antimicrobial weapons that could be used for interbacterial competition. These findings revealed the natural coexistence of competing symbiotic strategies of diatom-associated bacteria in the SO, and the utility of this tripartite system, composed of a diatom and two bacterial strains, as a co-culture model to probe ecological-relevant interactions between diatoms and the bacteria that compete for access to the phycosphere.

     
    more » « less
  4. The Galápagos Archipelago is a globally significant biodiversity hotspot. However, compared to the relatively well-known megafauna, the distribution and ecological significance of marine protists in this system are poorly understood. To gain an understanding of the protistan assemblages across trophic modes, an intensive oceanographic survey was conducted in the Galápagos Marine Reserve (GMR) in October of 2018. The Equatorial Undercurrent (EUC)-influenced region had higher chlorophyll- a (Chl- a ) concentrations than those of the eastern regions of the archipelago, along with higher abundances of protistan grazers. Specifically, proportions of autotrophic and potentially mixotrophic dinoflagellates were higher in the EUC, whereas in the eastern regions, heterotrophic dinoflagellates and chlorophytes dominated. Taxonomic composition and biochemical indicators suggested proportions of micrograzers and their associated heterotrophic biomass was higher in the oligotrophic, low Chl- a regions in the east. We also report observations from a dinoflagellate bloom in the western archipelago, which was heavily influenced by upwelling of the EUC. The red tide-forming dinoflagellate Scrippsiella lachrymosa was highly detected through light microscopy and DNA amplicon sequencing. In addition, the heterotrophic dinoflagellate Polykrikos kofoidii was detected and, based on cell densities observed in this study and grazing rates obtained from the literature, estimated to potentially graze up to 62% of S. lachrymosa bloom population. Our findings thus provide new insights into the composition of micrograzers and their potential roles in structuring protistan communities in the Galápagos Archipelago. 
    more » « less
  5. Abstract

    Diatom community composition has a critical influence on global ocean health and ecological processes. Developing accurate and efficient methods for diatom identification under dynamic environmental conditions is essential to understanding the implications of diatom community changes. Two developing methods for identifying and enumerating phytoplankton, cell imaging and molecular sequencing, are experiencing rapid advancements. This study aims to compare diatom taxonomic composition results within natural assemblages derived from rapidly advancing methods, FlowCam imaging and metabarcoding of the V4 region of the 18S rRNA gene, with traditional light microscopy cell counting techniques. All three methods were implemented in tandem to analyze changes in dynamic diatom assemblages within simulated upwelling experiments conducted in the California upwelling zone. The results of this study indicate that, summed across all samples, DNA sequencing detected four times as many genera as morphology‐based methods, thus supporting previous findings that DNA sequencing is the most powerful method for analyzing species richness. Results indicate that all three methods returned comparable relative abundance for the most abundant genera. However, the three methods did not return comparable absolute abundance, primarily due to barriers in deriving quantities in equal units. Overall, this study indicates that at the semi‐quantitative level of relative abundance measurements, FlowCam imaging and metabarcoding of the V4 region of the 18S rRNA gene yield comparable results with light microscopy but at the qualitative and quantitative levels, enumeration metrics diverge, and thus method selection and cross‐method comparison should be performed with caution.

     
    more » « less
  6. Abstract

    In the California Current Ecosystem, upwelled water low in dissolved iron (Fe) can limit phytoplankton growth, altering the elemental stoichiometry of the particulate matter and dissolved macronutrients. Iron-limited diatoms can increase biogenic silica (bSi) content >2-fold relative to that of particulate organic carbon (C) and nitrogen (N), which has implications for carbon export efficiency given the ballasted nature of the silica-based diatom cell wall. Understanding the molecular and physiological drivers of this altered cellular stoichiometry would foster a predictive understanding of how low Fe affects diatom carbon export. In an artificial upwelling experiment, water from 96 m depth was incubated shipboard and left untreated or amended with dissolved Fe or the Fe-binding siderophore desferrioxamine-B (+DFB) to induce Fe-limitation. After 120 h, diatoms dominated the communities in all treatments and displayed hallmark signatures of Fe-limitation in the +DFB treatment, including elevated particulate Si:C and Si:N ratios. Single-cell, taxon-resolved measurements revealed no increase in bSi content during Fe-limitation despite higher transcript abundance of silicon transporters and silicanin-1. Based on these findings we posit that the observed increase in bSi relative to C and N was primarily due to reductions in C fixation and N assimilation, driven by lower transcript expression of key Fe-dependent genes.

     
    more » « less
  7. Huber, Julie A. (Ed.)
    ABSTRACT Wind-driven upwelling followed by relaxation results in cycles of cold nutrient-rich water fueling intense phytoplankton blooms followed by nutrient depletion, bloom decline, and sinking of cells. Surviving cells at depth can then be vertically transported back to the surface with upwelled waters to seed another bloom. As a result of these cycles, phytoplankton communities in upwelling regions are transported through a wide range of light and nutrient conditions. Diatoms appear to be well suited for these cycles, but their responses to them remain understudied. To investigate the bases for diatoms’ ecological success in upwelling environments, we employed laboratory simulations of a complete upwelling cycle with a common diatom, Chaetoceros decipiens , and coccolithophore, Emiliania huxleyi . We show that while both organisms exhibited physiological and transcriptomic plasticity, the diatom displayed a distinct response enabling it to rapidly shift-up growth rates and nitrate assimilation when returned to light and available nutrients following dark nutrient-deplete conditions. As observed in natural diatom communities, C. decipiens highly expresses before upwelling, or frontloads, key transcriptional and nitrate assimilation genes, coordinating its rapid response to upwelling conditions. Low-iron simulations showed that C. decipiens is capable of maintaining this response when iron is limiting to growth, whereas E. huxleyi is not. Differential expression between iron treatments further revealed specific genes used by each organism under low iron availability. Overall, these results highlight the responses of two dominant phytoplankton groups to upwelling cycles, providing insight into the mechanisms fueling diatom blooms during upwelling events. IMPORTANCE Coastal upwelling regions are among the most biologically productive ecosystems. During upwelling events, nutrient-rich water is delivered from depth resulting in intense phytoplankton blooms typically dominated by diatoms. Along with nutrients, phytoplankton may also be transported from depth to seed these blooms then return to depth as upwelling subsides creating a cycle with varied conditions. To investigate diatoms’ success in upwelling regions, we compare the responses of a common diatom and coccolithophore throughout simulated upwelling cycles under iron-replete and iron-limiting conditions. The diatom exhibited a distinct rapid response to upwelling irrespective of iron status, whereas the coccolithophore’s response was either delayed or suppressed depending on iron availability. Concurrently, the diatom highly expresses, or frontloads, nitrate assimilation genes prior to upwelling, potentially enabling this rapid response. These results provide insight into the molecular mechanisms underlying diatom blooms and ecological success in upwelling regions. 
    more » « less
  8. Abstract

    Since the middle of the past century, the Western Antarctic Peninsula has warmed rapidly with a significant loss of sea ice but the impacts on plankton biodiversity and carbon cycling remain an open question. Here, using a 5-year dataset of eukaryotic plankton DNA metabarcoding, we assess changes in biodiversity and net community production in this region. Our results show that sea-ice extent is a dominant factor influencing eukaryotic plankton community composition, biodiversity, and net community production. Species richness and evenness decline with an increase in sea surface temperature (SST). In regions with low SST and shallow mixed layers, the community was dominated by a diverse assemblage of diatoms and dinoflagellates. Conversely, less diverse plankton assemblages were observed in waters with higher SST and/or deep mixed layers when sea ice extent was lower. A genetic programming machine-learning model explained up to 80% of the net community production variability at the Western Antarctic Peninsula. Among the biological explanatory variables, the sea-ice environment associated plankton assemblage is the best predictor of net community production. We conclude that eukaryotic plankton diversity and carbon cycling at the Western Antarctic Peninsula are strongly linked to sea-ice conditions.

     
    more » « less